Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.
🔍MCAR (Missing Completely at Random) Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.
📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи. ✅ Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.
🔍MAR (Missing At Random) Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.
📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть. ✅ Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.
🔍MNAR (Missing Not At Random) Пропуски зависят от самого значения, которое пропущено. То есть в данных есть систематическая причина, скрытая внутри пропуска.
📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий. ✅ Что делать: здесь простые методы не помогут. Часто требуется: — Моделировать механизм пропуска явно. — Включать индикаторы пропусков как отдельные признаки. — Использовать экспертные знания или специализированные байесовские подходы.
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.
What is Telegram?
Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.
Библиотека собеса по Data Science | вопросы с собеседований from nl